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Abstract

Purpose – This paper seeks to discuss a mechanistic modeling concept for local phenomena
governing two- and multi-phase flows and heat transfer.

Design/methodology/approach – An overview is given of selected issues concerning the formulation
of multidimensional models of two-phase flow and heat transfer. A complete computational multiphase
fluid dynamics (CMFD) model of two-phase flow is presented, including local constitutive models
applicable to two-phase flows in heated channels. Results are shown of model testing and validation.

Findings – It has been demonstrated that the overall model is capable of capturing various local flow
and heat transfer phenomena in general, and the onset of temperature excursion (CHF) in low quality
forced-convection boiling, in particular.

Research limitations/implications – Whereas the multiphase model formulation is applicable to
a large class of problems, geometries and operating conditions, the closure laws and results are
focused on forced-convection boiling in heated channels.

Practical implications – The proposed approach can be used to predict multidimensional velocity
field and phase distribution in two-phase flow devices and components used in thermal power plants,
nuclear power plants and chemical processing plants.

Originality/value – A complete mechanistic multidimensional model of forced-convection boiling in
heated channels is given. The potential of a CMFD approach is demonstrated to perform virtual
experiments that can be used in system design and optimization, and in safety analysis.

Keywords Flow, Heat transfer, Modelling

Paper type Research paper

1. Introduction
The growing range of applications and the needs for a better understanding of
multiphase phenomena in various branches of technology require analytical and
computational tools that extend far beyond the current generation codes. The necessary
innovations encompass modeling concepts, problem formulation and computational
methods. It is interesting to note that in addition to fundamental theoretical
advancements affecting the design and operation of various industrial systems, the
application of new mechanistic models and codes will also have significant direct impact
on cost effectiveness. This is due to the fact that computer simulations using
physically-based models can contribute to reducing the experimental efforts which are
needed today mainly to obtain data for new correlations being developed for specific
system designs and operating conditions. Furthermore, a better understanding of the
physics of multiphase flows should help to design future experiments and develop new
instrumentation and experimental techniques.

The objective of this paper is to present an overview of selected issues concerning
the formulation of local multidimensional models of two-phase flow and heat transfer,
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including: properly capturing the governing physical phenomena, consistency of
model formulation, and specific applications and experimental validations.

2. Multifield model
2.1 Generic ensemble-averaged conservation equations
Assuming that the k-th (k ¼ 1, 2, . . .) component of the multifluid flow can be modeled
using the concept of continuum, the corresponding Eulerian conservation equations for
mass, momentum and energy, respectively, become:

›rk

›t
þ 7 · ðrkvkÞ ¼ 0 ð1Þ

›ðrkvkÞ

›t
þ 7 · ðrkvkvkÞ ¼ 27pk þ 7 ·

¼
t
k
þ rkg ð2Þ

›ðrkekÞ

›t
þ 7 · ðrkvkekÞ ¼ 27 · ½ð2pk¼I þ¼

t
k
Þ · vk�2 7 · q00k þ rkg · vk ð3Þ

For any k, these equations are valid only at locations that pertain to fluid-k at a given time
instant. At the boundaries between the fluids or phases (which may vary with time),
appropriate boundary conditions must be formulated, such as those for the continuity of
velocity, shear stress and heat flux. Note that if the interfaces are being modeled as sharp
discontinuities in fluid density and other properties, parameters such as pressure and
velocity and temperature gradients, may also experience discontinuities.

The multifield modeling concept of interpenetrating fluids is based on applying the
time and space, or, in general, ensemble (statistical) averaging techniques to
instantaneous conservation equations for each fluid. The resultant equations are
determined with respect to a common physical and computational domain, and include
terms accounting for the various interfacial effects between the individual fields.

A typical form of conservation equations for mass, momentum and energy,
respectively, obtained by applying the appropriate averaging procedure to equations
(1)-(3), respectively, can be written as:

›ðakrkÞ

›t
þ 7 · ðakrk �vkÞ ¼ Gk ð4Þ

›ðakrk �vkÞ

›t
þ 7 · ðakrk �vk �vkÞ ¼ 27ðak �pkÞ þ 7 · ak �¼t

t

k

� �
þ akrkg þ ~M

i

k ð5Þ

›ðakrk�ekÞ

›t
þ 7 · ðakrk �vk�ekÞ ¼ 27 · ak �q

00t
k

� �
2 7 · ak 2�pk¼I þ �

¼
tt
k

� �
· �vk

� �
þ akrkg · �vk þ Ei

k

ð6Þ

where �
¼
tt
k
¼ �

¼
tm
k
þ �

¼
tRe

k
is the total combined shear and turbulent shear

stress, �q00
t
k ¼ �q00

k
k þ �q00

Re
k is the total heat flux, and the corresponding interfacial

source terms for fluid-k are given by:

Gk ¼ 2
1

Dt
i[½Dt�

X 1

vik · nk
�� �� rk vk 2 vik

� 	
· nk ð7Þ
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i
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1
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i[½Dt�
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� 	
þ pkI 2¼

tt

k

� �
· nk ð8Þ

Ei
k ¼ 2

1
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i[½Dt�

X 1

vik · nk
�� �� rkek vk 2 vik

� 	
þ pkI 2 q00

t
k

h i
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2.2 Effect of interactions between fields representing same phase
The model given by equations (4)-(6) has been derived for gas-liquid two-phase flows
with well defined topology. Specifically, it applies to dispersed bubbly flows where the
interfacial interactions occur across bubble/liquid interfaces that gradually evolve in
time and space. However, in the case where the interfacial interactions occur within a
given phase, e.g. between dispersed liquid droplets and a liquid film, or as a result of
bubble coalescence or breakup, the ensemble-averaged conservation equations,
equations (4)-(6), must be complemented with additional terms. This, in turn, leads to
the formulation of a general multifield model of multiphase flows. In this model, which
is a generalization of the well-established two-fluid model, the individual fields may
represent either separate fluids and phases, or geometrically/topologically distinct flow
configurations within a given physical fluid or phase (e.g. continuous liquid field,
dispersed small bubbles or particles, large deformed bubbles or bubble clusters,
continuous gas/vapor field, and dispersed liquid field – droplets). In such model, the
interfacial source terms in equations (4)-(6), respectively, must be expanded by adding
the appropriate interfacial transfer terms associated with the interfacial mass transfer
from field-n into field-k, m000

m;k, both representing the same phase. The mass, momentum
and energy, respectively, conservation equations for a multifield model of gas/liquid
flow can be written as:

›ðakrkÞ

›t
þ 7 · ðakrk �vkÞ ¼ Gk þm000

k ð10Þ

›ðakrk �vkÞ
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X
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m

X
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where Gk ¼
P

nGnk and m000
k ¼

P
mm

000
m;k.
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For a typical two-phase two-field model the index, k, includes: cl – continuous liquid
phase, and dv – dispersed vapor phase. On the other hand, for a four-field model, the
following fields can be used: continuous liquid phase (cl), dispersed liquid (dl),
continuous vapor (cv) and dispersed vapor (dv).

Several additional conditions, or closure laws, are needed to close the model given
by equations (10)-(12). The form of individual interfacial closure laws depends on the
specific physical phenomena. For example, for dispersed (with small size “particles”)
flows, the total interfacial force is given as a superposition of terms describing various
effects (Anglart et al., 1977; Drew and Passman, 1999). The range of applications
(limitations) and accuracy of predictions of the multifield model strongly depend on the
degree to which the closure laws, determined in terms of ensemble-averaged state
variables (i.e. component concentrations, velocities, specific energies, and pressures),
are capable of capturing the most important (for a given situation) local mass,
momentum and heat transfer phenomena. Selected issues arising from the multifield
model formulation are discussed in the next section.

2.3 Governing equations for dispersed two-phase flows
Although the multifield conservation equations seem to be a direct extension of those
governing single-phase flows, it turns out that the averaging procedure introduces
several constraints on the formulation of individual models. One such constraint,
arising from the multifield modeling concept, imposes a shear-stress coupling effect
between the continuous and disperse fields.

Let us consider a two-phase flow of densely packed “particles” (bubbles, droplets or
solid particles) in a continuous fluid, shown in Figure 1(a).

Ignoring phase change, a standard form of the momentum conservation equations
for the dispersed and continuous fields is:

›ðadrd �vdÞ

›t
þ 7 · ðadrd �vd �vdÞ ¼ 2ad7�pd 2 �pd 2 pid

� 	
7ad þ ad7 · �

¼
tt
d

þ �
¼
tt
d
2

¼
ti

d

� �
·7ad þ adrdg þMi

d

ð13Þ

›½acrc �vc�

›t
þ 7 · ðacrc �vc �vcÞ ¼ 2ac7�pc 2 �pc 2 pic

� 	
7ac þ ac7 · �

¼
tt
c

þ �
¼
tt
c
2

¼
ti

c

� �
·7ac þ acrcg þMi

c

ð14Þ

Figure 1.
Particulate two-phase
flow: (a) packed particles;
(b) dilute particles

average flow
direction

(a)
(b)
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Now, let us consider a two-phase flow of diluted particles dispersed in a continuous
fluid, shown in Figure 1(b). Since, particles are in no contact with one another, particle
motion is governed by the combination of interfacial and gravity forces. Thus, using
the Lagrangian frame of reference, we write:

rp
dvp
dt

¼ rpVpg 2 Fc2p ð15Þ

Ensemble-averaging equation (15) yields:

›ðadrd �vdÞ

›t
þ 7 · ðadrd �vd �vdÞ ¼ pid7ad 2¼

ti

d
·7ad þ adðrd 2 rmÞg þMi

d ð16Þ

where rm ¼ acrc þ adrd is the mixture density.
In such case, there is no pressure force between the particles or shear-stress term in

the dispersed field momentum equation. If the standard form of equation (13) is used
for dilute particle flows, the results may become unphysical.

It turns out, however, that a complete two-fluid model can still be applied to such
conditions, provided the dispersed field pressure (which is not an independent variable)
and the continuous-field-induced shear stress on dispersed particles are properly
determined based on first-principle physical considerations (Podowski, 2007).
Specifically, the following relationships must be satisfied simultaneously:

�pd ¼ �pc ¼ �p; �
¼
tt
d
¼ �

¼
tt
c
¼ �

¼
tt ð17Þ

To illustrate this modeling inconsistency, simulations were performed using the
NPHASE (Antal et al., 2000) code for fully-developed dilute particulate flow in a
horizontal tube. The effect of using equation (13) is shown in Figure 2, where the
calculated particle velocity is considerably higher than the velocity of the liquid that
drives the particles. This is clearly unphysical. When equation (13) was used instead
(obtained by substituting equation (17) into (13)), the fully-developed velocity of
particles matched the velocity field of the liquid, as expected.

3. Mechanistic predictions of forced-convection boiling heat transfer
3.1 Subcooled nucleate boiling
In the nucleate subcooled boiling in a heated channel, the wall heat is partially used to
form bubbles and the remaining portion is transferred to the liquid. The heat transfer

Figure 2.
Radial profiles of: liquid
(vl), dilute particles (vp),

and relative velocity
(vr ¼ vp 2 vl), across a

horizontal pipe using
inconsistent two-field

model
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from the wall in the vicinity of a nucleation site occurs during two distinct periods: the
bubble growth time and the waiting time. The total convective heat flux from the wall
is the sum of three component terms (Kurul and Podowski, 1991):

q00NB ¼ q001f þ q00e þ q00Q ð18Þ

where q001f is the single-phase convective heat flux, q00e is the heat flux associated with
phase change (evaporation), and q00Q is the so-called quenching heat flux, which is
transferred to the liquid phase during the waiting time (Figure 3).

Outside of the influence area of the bubbles, the heat transfer from wall to the liquid
can be calculated by:

q001f ¼ A00
1fChrl cplulðTw 2 TlÞ ¼ H 1fðTw 2 TlÞ ð19Þ

where A00
1f is the fraction of the wall unaffected by the nucleation sites, Ch is the

Stanton number determined in terms of the local near-wall liquid velocity and Prandtl
number, Tw is the wall temperature and Tl is the local liquid temperature near the
heated wall.

The evaporation heat flux is given by:

q00e ¼
p

6
d2

bwrvfn
00hfg ð20Þ

where dbw is the bubble diameter at detachment, f is the frequency of nucleation, and n00

is the number of nucleation sites per unit area (nucleation site density).
The quenching heat flux has been analytically calculated by Del Valle and Koening

(1985) as:

q00Q ¼ twfA
00
2f

2klðTw 2 TlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ptwkl=rl cpl

p ð21Þ

where tw is the waiting time elapsed between the detachment of a given bubble and
the nucleation of a subsequent one. The term, A00

2f, is the fraction of the wall area
participating in the quenching heat flux.

In order to close the present model, additional relationships are needed regarding
parameters such as: nucleation frequency, nucleations site density, bubble diameter at
departure, etc. In particular, the nucleation frequency, f, plays a very important role in
the overall analysis. Whereas various phenomenological models and correlations are
available in the literature for the nucleation frequency (Ceumern-Lindenstjerna, 1977),
this parameter can be also deduced from theoretical considerations of the bubble
ebullition cycle.

Figure 3.
Vapor structures close to
the heated wall in the
subcooled flow boiling q"e q"1φ

q"Q
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The approach combines transient heat transfer solutions for the heated wall and for the
liquid laminar sublayer filling the space vacated by departing bubbles in forced
convection subcooled boiling (Podowski, R.M. et al., 1997). Whereas wall heat
conduction is, in general, multidimensional in nature, a one-dimensional model should
still be appropriate for this purpose. This is due to the fact that the characteristic time
of surface temperature fluctuations during nucleation is very short, so that the distance
across the wall affected by a change in the surface temperature is small compared to
the size of the surface area exposed to quenching by cold water.

Using a time-dependent wall surface temperature (yet to be determined), as a
boundary condition, the heat conduction equation can be solved for the time- and
position-dependent temperature distribution across the wall during the inside-cavity
nucleation period:

T̂wð y; tÞ ¼
aw

2
ffiffiffiffi
p

p

Z t

0

½Tiðt
0Þ2 T0�

y

½awðt 2 t0Þ�3=2
Exp 2

y 2

4awðt 2 t0Þ

� �
dt0 ð22Þ

where T0 is the reference steady state surface temperature prior to the onset of a new
ebullition cycle, and aw is the thermal diffusivity of the wall. For most practical
applications it can be assumed that T0 < Tsat.

Solving the heat conduction again for the liquid in the near-wall region and coupling
the two solutions with the appropriate boundary conditions, yields the following
equation for the time-dependent surface temperature during the dwell time:

R

Z t

0

dTiðt
0Þ

dt0
dt0ffiffiffiffiffiffiffiffiffiffiffi
t 2 t0

p ¼ kwB ð23Þ

where B ¼ 2q00w;s=kw, and q00w;s , 0 is the steady state (average) wall heat flux, and:

R ¼
kwffiffiffiffiffiffiffiffi
paw

p þ
klffiffiffiffiffiffiffi
pal

p ð24Þ

Solving equation (23) yields (Figure 4):

TiðtÞ ¼ Tið0
þÞ ¼

2kwB

pR

ffiffi
t

p
ð25Þ

Figure 4.
Surface temperature

oscillations in the wall
during the ebullition cycle
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Also, the time-dependent local surface heat flux can be evaluated as:

TiðtÞ ¼ 2
kl½Tið0

þÞ2 TB�ffiffiffiffiffiffiffiffiffi
palt

p 2
klkwB

R
ffiffiffiffiffiffiffi
pal

p ð26Þ

where:

Tið0
þÞ ¼

kwT0ffiffiffiffiffi
aw

p þ
klTBffiffiffiffi
al

p

� �
kwffiffiffiffiffi
aw

p þ
klffiffiffiffi
al

p

� �21

ð27Þ

3.1.1 Solution for dwell time, tD. Dwell time is the period of time beginning at the
moment of bubble departure and ending at the moment when the bubble radius
reaches the wall cavity radius. At this point, the bubble will enter the growth period.
Using equation (25), the following equation can be derived:

2kwB

pR

ffiffiffiffiffi
tD

p
2

½Tið0
þÞ2 TB�rcffiffiffiffiffiffiffiffiffiffiffiffi
paltD

p þ ½Tið0
þÞ2 Tsat�2

Bkwrc

R
ffiffiffiffiffiffiffi
pal

p 2
2s

rc

Tsaty fg

hfg
¼ 0 ð28Þ

where rc is the cavity radius. As can be seen, for given: pressure, liquid bulk
temperature, wall heat flux, cavity size, and the material properties of both the wall and
the fluid, equation (28) yields an analytical expression for the bubble dwell time, tD.

3.1.2 Solution for growth time, tG. During bubble growth, the local instantaneous
heat flux from the wall to the bubble is almost entirely used to evaporate the liquid
sublayer between the wall and the bubble, and the resultant vapor accumulates in the
growing bubble. Since, the temperature drop across the thin sublayer is very small, the
local surface temperature during this period remains close to the saturation
temperature (thus, T0 < Tsat, as shown in Figure 4). Using the corresponding energy
balance with an analytically derived time-dependent surface heat flux during that
period, the following relationship can be obtained between the growth time, tG, and the
critical bubble diameter, db,crit:

db;critrghfg

2kw
¼ 2BtG þ

2½Tsat 2 TiðtGÞ�rcffiffiffiffiffiffiffiffi
paw

p
ffiffiffiffiffi
tG

p
ð29Þ

Several different models have been developed to evaluate the bubble diameter at
departure. A simple model was proposed by Tolubinsky and Kostanchuk (1970),
whereas another, more mechnistic (based on the force balance for a single bubble)
model was developed by Staub (1968).

Finally, the total bubble departure time and the frequency of bubble departure from
a cavity can be obtained from:

f dep ¼
1

tdep
¼

1

tD þ tG
ð30Þ

Another closure law, for the nucleation site density in equation (20) is obtained from
the experimental data of Lemmert and Chawla (1977):

n00 ¼ ½mðTw 2 TlÞ�
1:805 where m ¼ 185 ð31Þ

modified to account for the fact that even when the two neighboring nucleation sites
are very close to each other, they may still be active if they are nucleating out of phase
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and if the waiting time is long enough. Details are given by Kurul and Podowski (1990,
1991) and Podowski (2000).

In addition to the near wall phenomena, it is important that the local interfacial heat
transfer between the bubbles departing from the heated wall and the liquid be
accounted for in the overall multidimensional model. In particular, the interfacial heat
flux can be determined from:

q00i ¼
kc

DH

2 þ 0:6
rldb vrj j

ml

� �0:5

Pr0:33
l

" #
A000

b ðTsat 2 TlÞ ð32Þ

where A000
b is the vapor interfacial area density and vr is the gas-to-liquid relative

velocity.
Since, the vapor temperature is close to the saturation temperature, the interfacial

phase change (condensation) rate can be obtained from, Gc ¼ q000i =hfg.
The models described above have been tested and validated against experimental

data. In particular, the heat flux partitioning model was incorporated in the CFX (AEA,
1998) computer code and used to predict temperature and void fraction distribution for
various experimental data sets. An example showing the results of simulations for the
experiments of Velidandla et al. (1995) in an annular channel heated for inside are
shown in Figure 5. As it can be seen, the agreement between the predicted and
measured radial void distribution is excellent.

Figure 5.
Predicted and measured
local hydrodynamic and
thermal parameters for
subcooled boiling in an
annular channel heated

from inside
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3.2 Critical heat flux and temperature excursion
The physical fundamentals of the model discussed in this section are based on the
extensive experimental evidence concerning local phenomena and flow structure near
the heated wall, such as: the bubble-ebullition process (i.e. bubble formation, growth,
detachment from the nucleation site, departure from the wall, and collapse), the
velocity, phase and temperature distributions, and the conditions which may lead to
wall temperature excursion (CHF). The processes of bubble formation, its
growth/collapse, and flow structure conditions leading to CHF are shown in Figure 6
and can be classified as (Alajbegovic et al., 1997; Podowski, M.Z. et al., 1997):

. bubble formation and initial growth inside the superheated thermal sublayer
(due to condensation in contact with subcooled liquid, bubbles can reach their
maximum size either while still attached to the heated wall or after they depart
from the surface);

. at high-heating rates, small bubbles start coalescing near the wall and form
larger elongated bubbles; and

. nucleation of small bubbles continues to occur between the elongated bubbles, as
long as liquid replenishment at the surface is possible.

The formation of elongated bubble formation is shown in Figure 6.
In the presence of elongated bubbles, the average wall heat flux can partitioned into

the following terms:

�q00w ¼ �q00sb þ �q00lb ¼ q00H ð33Þ

Figure 6.
Flow neat the heated wall
in low-quality flow boiling

Flow
U = 0.5 m/s

Middle section Outlet section
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(b) (d)
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(c)

Notes: (a) Experimental observations Galloway and Moudawar (1993) of elongated bubble formation;
(b) a schematic of the near-wall bubble structure; (c) near-wall temperature distribution; (d) near-wall
void fraction distribution; (e) nucleation-induced force pushing bubbles away from the heated wall

Reproduced from the only available original
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where �q00sb is the component of the total wall heat flux corresponding to the dispersed
bubble region (Section 3.1), �q00lb is the component associated with heat transfer between
the wall and the elongated bubbles, and q00H is the average heated power per unit
surface area:

q00H ¼
qH
AH

ð34Þ

The fractional wall heat flux pertaining to the dispersed bubble region can be
determined from:

�q00sb ¼ �q00NBA
00
NB ð35Þ

where �q00NB is the nucleate boiling heat flux given by equation (18) and A00
NB is the heated

surface area fraction (area density) in the dispersed bubble region (Figure 7).
In general, the continuous vapor heat flux can be written as a sum of two terms:

�q00lb ¼ �q00LSA
00
LB

LLS

LLB
þ �q00dryA

00
LB 1 2

LLS

LLB

� �
ð36Þ

where A00
LB is the area density for the elongated bubbles, �q00LS is the heat flux across the

liquid sublayer, �q00dry is the heat flux in the dry region of elongated bubbles, LLB is
the length of elongated bubbles and LLS is the length of the liquid sublayer region
between the elongated bubble and the wall.

It should be noted that, depending on the flow and heat transfer conditions near the
heated wall, the liquid sublayer separating elongated bubbles from the wall may
extend along the entire length of the bubble, or, if the evaporation rate is sufficiently
high, a dry region may form bringing a portion of the bubble area to direct contact with
the wall (Figure 7).

The measurements of the length of large bubbles (Galloway and Mudawar, 1993;
Gersey and Mudawar, 1995) show that it agrees well with the critical wavelength of the
Helmholtz instability at the vapor/liquid interface. Comparing the pressure drop at
the wavy interface calculated from the kinematic considerations to that due to surface
tension yields the following expression for the critical length of a large bubble:

LLB ¼
2psðrf þ rgÞ

rf rgðuLB 2 ulÞ
2

ð37Þ

where uLB is the elongated bubble velocity, and ul is the local liquid velocity around the
bubble.

Figure 7.
Phase distribution in the

near-wall region

uLB

L dry L LS

L LB LNB

Z

q"NB
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Another parameter of interest to the present model is the distance between the
elongated bubbles and the wall. As stated before, these bubbles flow very close to the
walls, at an initial distance (i.e. at the tip of the bubbles) corresponding to the viscous
sublayer thickness. Thus, the initial distance between the bubbles and the wall can be
evaluated (Alajbegovic et al., 1997) as, d0 ¼ 10v/ut, where ut ¼

ffiffiffiffiffiffiffiffiffiffiffi
tw=rl

p
is the shear

velocity.
3.2.1 Case (A). Let us first consider the situation where the liquid sublayer extends

over the entire length of elongated bubbles (i.e. there is no dry region). In such case,
equation (36) becomes:

�q00lb ¼ �q00LBA
00
LB ð38Þ

As long as the heated wall is relatively thin, i.e. Bi ¼ Hdw/kw # 0.1, where dw and kw
are the wall thickness and thermal conductivity, respectively, and H is the heat transfer
coefficient across the liquid sublayer, the local wall temperature can be obtained from
a 1-D heat conduction equation:

rwcpwdw
›Tw

›t
¼ rwcpwdwuLB

dTw

dz
¼ q00H 2 q00s þ dwkw

d2Tw

dz2
ð39Þ

where the independent variable, z, is moving with the elongated bubble (Figure 7).
Furthermore, it can be shown that for a thin heater wall, the axial conduction term

rate can be neglected. Thus, equation (39) simplifies to:

rwcpwdwuLB
dTw

dz
< q00H 2 q00s ð40Þ

In the wall region along a single elongated bubble separated from the wall by a liquid
sublayer, the wall heat flux is given by:

q00s ¼ q00LB ¼
kl
dLS

ðTw 2 TsatÞ ð41Þ

Consequently, equation (40) becomes:

rwcpwdwuLB
dTw

dz
¼ q00H 2

kl
dLS

ðTw 2 TsatÞ ð42Þ

where the liquid sublayer thickness satisfies the energy conservation equation:

rwhfguLB
ddLS

dz
¼ 2q00LB ¼ 2

kl
dLS

ðTw 2 TsatÞ ð43Þ

Equations (42) and (43) can be rewritten as:

duw
dz

¼ a1 2 b1
uw

dLS
ð44Þ

ddLS

dz
¼ 2c

uw

dLS
ð45Þ

where uw ¼ Tw 2Tsat, a1 ¼ q00H=rwcpwdwuLB, b1 ¼ kl=rwcpwdwuLB and c ¼ kl=rwcpwhfg.
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Using the following boundary conditions:

uwð0Þ ¼ uw;o ð46Þ

dLSð0Þ ¼ dLS;o ð47Þ

Equations (44) and (45) can be solved analytically, to obtain the following algebraic
equation for:

ln
cf 2ðzÞ2 b1fðzÞ þ a1

cf2
o 2 b1fo þ a1

þ
b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a1c2 b2
1

q a tan
2cfðzÞ2 b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a1c2 b2
1

q 2 a tan
2cfo 2 b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a1c2 b2
1

q
2
64

3
75

¼ ln
fðzÞ2 ðb1=cÞ

ða1=dLS;oÞzþ ðfo 2 ðb1=cÞÞ

� �2

ð48Þ

where:

fðzÞ ¼
uwðzÞ

dLS;o þ c=b1 uwðzÞ2 uw;o þ a1z
� � ; fo ¼

uw;o

dLS;o
ð49Þ

Also, the position-dependent thickness of the liquid sublayer can be obtained from:

dLSðzÞ ¼ dLS;o þ
c

b1
uwðzÞ2 uw;o þ a1z
� �

ð50Þ

As can be seen, for given uw,o, dLS,o and LLB, equations (48) and (50) can be used to
determine the wall temperature at the end of the section adjacent to the elongated
bubble, uwðLLBÞ ¼ uw;1.

For the nucleate boiling region, we write:

rwcpwdwuLB
dTw

dz
¼ q00H 2 q00NB ð51Þ

where:

q00NB ¼ ðbQ þ H 1fÞðTsat 2 TlÞ þ beðTw 2 TsatÞ
1:805 þ H 1fðTw 2 TsatÞ ð52Þ

Equation (51) can be rewritten as:

duw
dz

< a2 2 b21uw 2 b22u
2
w ð53Þ

where:

a2 ¼
q00H 2 ðbQ þH 1fÞðTsat 2TlÞ

rwcpwdwuLB
; b21 ¼

H 1f

rwcpwdwuLB
; b22 ¼

beðTw;o 2TsatÞ
20:192

rwcpwdwuLB
:

Using the boundary condition:

uwðLLBÞ ¼ uw;1 ð54Þ
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the solution of equation (53) is:

uwðzÞ2 q1

uwðzÞ2 q2
¼

uw;1 2 q1

uw;1 2 q2
Exp ½2b22ðq1 2 q2Þðz2 LLBÞ� ð55Þ

where:

q1 ¼ 2
b21

2b22
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

21

4b2
22

þ
a2

b22

s
and q2 ¼ 2

b21

2b22
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

21

4b2
22

þ
a2

b22

s
:

Noting that for a quasi-periodic wall temperature distribution (corresponding to an
almost constant average wall temperature over the elongated bubble length scale)
we have:

uwðLLB þ LNBÞ ¼ uw;o ð56Þ

it can be readily seen that, for a given dLS,o, the combined equations (48) and (49) and
equations (54)-(56) can be solved for uw,0 and uw,1. Substituting the calculated values
back into equations (48) and (49) and equation (55), the wall temperature distribution
along each subregion can be determined. Subsequently, the average wall heat fluxes in
the liquid sublayer (long bubble) and nucleate boiling regions, respectively, can be
obtained from:

�q00LB ¼
kl
LLB

Z LLB

0

uwðzÞ

dLSðzÞ
dz ð57Þ

�q00NB ¼
1

LNB

Z LLBþLNB

LLB

{ðbQ þ H 1fÞðTsat 2 TlÞ þ be½uwðzÞ�
1:805 þ H 1fuwðzÞ}dz ð58Þ

where dLS(z) is given by equation (50).
Also, the average wall temperature can be obtained from:

�uw ¼
1

LLB þ LNB

Z LLBþLNB

0

uwðzÞdz ð59Þ

3.2.2 Case (B). In this case, the liquid sublayer evaporates completely over a distance
smaller than the length of the elongated bubble. For the region corresponding to the
liquid sublayer, we can still use equations (44) and (45). Denoting, uw(LLS) ¼ uw,1,
we obtain:

ln
ðuw;1=dLS;oÞ

2

f2
o 2 ðb1=cÞfo þ ða1=cÞ

" #
þ

b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c2 b2

1

q p

2
2 a tan

2cfo 2 b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c2 b2

1

q
2
64

3
75 ¼ 0 ð60Þ

and:

dLS;o þ
c

b1
uw;1 2 uw;o þ a1LLS

� �
¼ 0 ð61Þ

Equations (60) and (61) can be solved for the length of the liquid sublayer, LLS, and the
wall temperature at the end of the sublayer, uw,1.
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In the dry region along the elongated bubble, equation (40) becomes:

rwcpwdwuLB
dTw

dz
¼ q00H 2 q00dry ð62Þ

where:

q00dry ¼ HvðTw 2 TsatÞ ð63Þ

Equation (62) can be rewritten as:

duw
dz

¼ a1 2 b3uw ð64Þ

where a1 was defined before and b3 ¼ Hv=ðrwcpwdwuLBÞ.
The solution of equation (64) with the boundary condition given by equation (54) is:

uwðzÞ ¼ uw;1Exp½2b3ðz2 LLSÞ� þ
a1

b3
{1 2 Exp½2b3ðz2 LLSÞ�} ð65Þ

In particular, equation (65) yields:

uw;2 ¼ uwðLLBÞ ¼ uw;1 2
a1

b3

� �
Exp½2b3ðLLB 2 LLSÞ� þ

a1

b3
ð66Þ

The wall temperature distribution in the dispersed bubble region is obtained in a
manner similar to that for case (A). Specifically, equation (55) can be replaced by:

uwðzÞ2 q1

uwðzÞ2 q2
¼

uw2 2 q1

uw2 2 q2
Exp½2b22ðq1 2 q2Þðz2 LLBÞ� ð67Þ

Now, for a given dLS,o, the combined equations (65)-(67) can be readily solved for uw,0,
uw,1 and uw,2. Furthermore, substituting the calculated values back into equations (65)
and (67), the wall temperature distributions along each subregion can be determined.
Then, the average wall heat fluxes in the liquid sublayer and dry regions, respectively,
can be obtained from:

�q00LS ¼
kl
LLS

Z LLS

0

uwðzÞ

dLSðzÞ
dz ð68Þ

�q00dry ¼
Hv

LLB 2 LLS

Z LLB

LLS

uwðzÞdz ð69Þ

where dLS(z) is given by equation (50). Also, the average wall heat flux in the nucleate
boiling region is given by equation (58). The average wall temperature can still be
obtained from equation (59).

In most practical cases, the equilibrium (or initial) thickness of the liquid sublayer is
large enough, so that the heat transfer rate across the sublayer (mainly conduction) is
smaller than the nucleate boiling heat transfer in the dispersed bubble region. If the
elongated bubbles are short and/or the liquid film is thick, the liquid sublayer
evaporates partially only, so that the liquid film extends along the entire bubble length.
This situation corresponds to case (A) discussed before. For a fixed average heating
rate, the reduction of heat removal rate across the liquid sublayer results in a local heat
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flux increase between the elongated bubbles. This increase becomes significant as the
surface area fraction occupied by the elongated bubbles gradually increases due to
small bubble coalescence. This, in turn, causes the wall temperature and thus the
nucleation rate of dispersed bubbles, to increase. As a result, the increase in the
volumetric fraction of dispersed bubbles along the channel accelerates, thus limiting
the amount of liquid replenishing at the surface. Since, for most practical cases of
forced-convection boiling, bubbles departing from the heated wall are small (0.001 m in
diameter or less) their deformation from spherical shape is minimal and can be ignored.
Thus, in order to maintain bubbles identity in the gradually shrinking (due to
coalescence) region between the elongated bubbles, the bubble concentration must be
below the critical value of about 0.74. As soon as the net bubble production exceeds
this limit, the individual bubbles cannot be maintained any longer. The resultant vapor
film formation will make it impossible for the liquid to approach the heated wall, and
the liquid sublayer between the elongated bubbles and the wall will immediately
evaporate. This, in turn, will cause temperature excursion (CHF).

If the liquid sublayer evaporation rate is high and/or the elongated bubbles are
sufficiently long, the liquid sublayer may partially evaporate even though fresh liquid
is still supplied via the nucleate boiling section (case (B)). Such partial dryout of the
liquid sublayer results in a slight wall temperature increase. If fresh liquid can still
flow toward the wall following dispersed bubble departure, this increase does not
necessarily lead to a sudden wall temperature excursion, at least as long as the small
bubble concentration is below the value limiting liquid replenishment. However, the
formation of a dry region underneath the elongated bubbles substantial diminishes the
heat transfer rate along the long bubbles, thus causing a faster formation of dispersed
bubbles. Hence, the temperature excursion is practically inevitable.

The models discussed above was converted into closure laws for a three field
(continuous liquid, small bubbles and elongated bubbles) multidimensional
computational multiphase fluid dynamics (CMFD) model, and incorporated into the
CFX code. The overall model was validated against the experimental results of Hino
and Ueda (1985). Those experiments of reference were performed for R113 at a pressure
of 147 kPa. The heated test section was a 0.357 m long and 0.018 m ID tube, with a
centrally located heated rod, 0.008 m diameter. The outer tube wall was insulated, and
there was an unheated section installed upstream of the annulus shaped heated section,
allowing the flow to reach fully-developed conditions at the entrance to the heater.

The approach used in the analysis was to take the experimental values of the mass
flux and inlet temperature corresponding to various experimental runs, and vary the
heater power until the proposed model triggered a wall temperature excursion. Then,
the corresponding value of the heating rate was compared to the actual experimental
heater power at which CHF was observed to occur. Typical results are shown in
Figures 8-10.

Figure 8 shows color contours of various local flow parameters. As can be seen, the
results are, qualitatively speaking, similar to those discussed in Section 3.1. In
particular, subcooled liquid is observed at the channel exit, with the subcooling
varying from 12 K near the unheated wall to about 5 K near the heated wall. However,
the void distribution is much more dramatic, and the void fraction near the heated wall
locally exceeds 0.7.
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The predicted radial distributions of fluid velocities and volume fractions are shown
in Figure 9, and the axial distributions of the local heat flux in the dispersed bubble
region and of the near-wall void fraction are shown in Figure 10. The velocities of
liquid, of small dispersed bubbles and of the elongated bubbles flowing along the
heated surface are presented there. As can be seen, the elongated bubbles flow faster
than small bubbles (the effect of reduced drag); however, their presence accelerates
small bubbles nucleating in the wall space available between the long bubbles.

Figure 8.
Calculated temperature,

void fraction and velocity
contours in subcooled

boiling: mass
flux ¼ 512 kg/m2 s, heat
flux ¼ 241 kW/m2, inlet

subcooling ¼ 30 K
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It is interesting to notice that the higher vapor velocities also affect the liquid velocity
profile, so that the maximum velocity is reached close to the heated wall. The fact that
elongated bubbles flow only near the heated wall is also shown in Figure 9. Whereas
their volume fraction near the wall may be relatively small, the overall impact of the
elongated bubbles is actually quite strong. This is because the presence of those
bubbles reduces the area fraction occupied by small bubbles, so that the actual
concentration of small bubbles is augmented, as shown in Figure 10. In this particular
case, the average volume fraction of small bubbles at the exit of 0.7 translates into the
actual concentration of 0.75 in the nucleate boiling sections of the wall.

As can be seen from Figure 10, whereas the total wall heat flux is constant along the
flow, the local heat flux in the dispersed bubble (nucleate boiling) region starts
increasing beyond the average heating rate. This is because the heat transfer across the
liquid film in the elongated bubble region is less effective. Consequently, in order to
maintain the average constant heating rate, the local heat flux in the dispersed bubble
region, and the corresponding wall temperature, must start increasing as the
population of elongated bubbles grows along the flow (Figure 10). In the present case,
the local wall heat flux near channel exit exceeds 270 kW/m2, compared to the average
heat flux of 241 kW/m2.

The analysis of the results shows that the formation of elongated bubbles
significantly accelerates the increase of local void fractions near the wall. Specifically,
whereas the average void fraction of dispersed bubbles (per unit volume of the
computational cell) does not exceed 0.7, the actual small bubble concentration between
the elongated bubbles is about 0.75. Given the fact that the upper physical limit for the
volume faction of spherical bubbles is 0.74, from this point on the dispersed bubbles
will rapidly start coalescing, thus preventing liquid replenishment into the liquid
sublayer between the elongated bubbles and the wall. This, in turn, will immediately
trigger the wall temperature excursion. We conclude from the above that the assumed
wall heat flux of 241 kW/m2 is just beyond the onset of CHF. Converting the difference
between the actual volume fraction value of 0.75 and the critical value of 0.74 into the
corresponding power level difference, implies that the calculated onset of CHF occurred
at about 238 kW/m2.

It is important to note that the predictions agree well with the experimental data not
only for the onset of CHF, but also for the wall temperature as well. The measured
temperature of the heated surface at channel exit prior to the occurrence of CHF was
24.2 K, whereas the calculated temperature was about 23.5 K.

The results of this and other CFD simulations for selected sets of experimental
conditions of Hino and Ueda (1985) are summarized in Table I.

As can seen from Table I, the agreement between the predictions and data are good,
especially given the complexity of the problem and the discrepancies observed between

Case

Mass
flux

(kg/m2 s)

Liquid
subcooling

(K)

Predicted
CHF
(kW)

Measured
CHF
(kW)

Error of CHF
prediction
(percent)

Predicted
max. wall
superheat

Measured
max. wall
superheat

1 512 30 238 241 2 25.5 24.2
2 512 20 172 211 16 20.8 23.1
3 1,236 30 305 332 8 24.8 26.9

Table I.
Predicted CHF results
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experimental data from various sources. The prediction errors are small for high inlet
subcooling cases, and slightly higher for lower subcooling and lower flow rate data.
This is expected, since the intensity of boiling increases when either the inlet
subcooling or mass flux decreases.

4. Importance of micro/nano scale phenomena
Predictions of boiling heat transfer in general, and CHF in particular, reported in the
literature, are typically characterized by considerable inaccuracies. Possible
explanations include reasons such as the inherent experimental uncertainties and
the complex local multiphase flow patterns and modes of heat transfer. However, it
also important to account for the possible effects of micro (or even nano) scale
phenomena characterizing the solid-surface/liquid/gas interface on bubble size, shape
and motion. In particular, the presence and properties of the liquid sublayer that
separates the gas/vapor from the wall may have a considerable impact on the near-wall
flow structure and heat transfer.

As an illustration, let us consider the geometry and flow conditions of long air
bubbles in an inclined tube filled with distilled water are shown in Figure 11. The pipe
geometry and material, and the bubble size, are identical in both cases. However, the
bubble in Figure 11(a) is in direct contact with the wall, whereas the one in Figure 11(b)
is separated from the wall by a thin liquid film. As a result of different shapes and wall
shears, the bubble velocity was different for each case; specifically, the velocity of the
bubble in Figure 9(b) was almost 20 percent higher. The only reason for that was that
the result in Figure 9(a) was obtained for a clean surface of the tube (clearly, a
non-wetting case), whereas in the other case the surface was coated with a tiny layer of
nanoparticles which improved surface wettability and lead to liquid film formation
between the bubble and the wall. Two interesting issues arise from Figure 11. First, if
specific boiling experiments were performed for the same conditions, but using heaters
characterized by different surface properties (such as wettability), the measured
boiling heat transfer in general, and the CHF in particular, would likely experience
some systematic differences. Secondly, if the surface is wetted, the question of liquid
film thickness must be addressed to understand the underlying flow and heat transfer
phenomena.

Figure 11.
The shape of air bubble tip

in double-distilled water
flowing along a 9 mm

diameter inclined
polycarbonate tube:

(a) clean surface;
(b) surface coated with

minute amount of 38 nm
alumina particles

(a)

Source: Podowski and Hirsa (2001)

(b)
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The physics of thin and ultra-thin films formed along solid surfaces is concerned with
the analysis of liquid spreading induced by surface motion. The issues of interest
include the characteristics of the capillary region and the macroscopic contact angle,
the development of ultra-thin (nanometer range) films by fully-wetting fluids, and
thin-film evaporation. A primary question in the case of surface-motion-induced film
coating is concerned with the effect of surface velocity on film thickness. This is shown
in Figure 12.

It turns out that by using a rigorous approach to film fluid mechanics, a complete
analytical multi-scale model can be derived, together with an efficient solution method
(Podowski and Kumbaro, 2004). This model proves useful for explaining the effect of
surface velocity on the liquid film thickness and, furthermore, shows the importance of
accounting for velocity distribution across the film on film thickness predictions.

The motion of liquid film can be described by a unidirectional momentum equation
along the surface:

›tyx

›y
¼ 2

›ðsK þFÞ

›x
þ rg ð70Þ

where K is the surface curvature, F ¼ B/dn represents the disjoining pressure at the
liquid-vapor interface, d is the film thickness, and the remaining notation is
conventional.

A profound difficulty in solving equation (70) is due to the fact that the liquid film
encompasses regions of dramatically different scales, from mm (in the initial capillary
region) to nm (in the asymptotic region, where the van der Vaals forces are dominant).
It turns out that a consistent and accurate solution to this problem can be obtained by
introducing an intermediate region, where both the capillary and disjoining pressures
are important. A typical solution for a stationary film, shown in Figure 13, clearly
illustrates dramatic changes in film geometry between the capillary, transition and
nano regions.

Solving equation (70) for the case of a moving wall shows that the film
asymptotically reaches a constant thickness. However, an analysis of the solutions for
various wall velocities indicates that, except for very small wall velocities (mm/s), the
asymptotic film thickness along a moving surface is beyond the range of van der Vaals

Figure 12.
Schematic of liquid film
along a moving plate
submerged in liquid pool:
(a) liquid film along
inclined moving wall;
(b) development of film
velocity
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forces, and it stays in the micrometer rather than nano-meter range. This is shown in
Figure 14(a).

Introducing the non-dimensional asymptotic film thickness and the capillary
number, respectively, D ¼ d1

ffiffiffiffiffiffiffiffiffiffiffi
rg=s

p
and Ca ¼ mU0/s, the solution of the present

model can be written as:

D ¼ 0:88ðCaÞ0:555 ð71Þ

Equation (71) is shown in Figure 14(b). A detailed derivation of the approach discussed
above (Hino and Ueda, 1985) demonstrates that it can be used to: evaluate ultra-thin
film thickness over the full range of surface inclination angles, from 0 to 908 deduce
the Hamaker constant based on a single measured value of film thickness in the
disjoining-pressure-controlled region, explain why the liquid film thickness on moving
surfaces is normally beyond the range of van der Waals forces, and formulate a
relationship between the asymptotic film thickness and the capillary number that
accounts for the effect of gravity on film velocity for any surface inclination angle.

Figure 13.
Liquid film characteristics

on a vertical stationary
wall: (a) meniscus region;

(b) transition and nano
regions
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5. Conclusions
Several aspects of mechanistic multidimensional modeling and computer simulations
of two-phase flows and heat transfer have been discussed. It has been shown that
significant progress has recently been made in this field.

A complete multidimensional CMFD model of two-phase flow has been presented,
including local constitutive models applicable to two-phase flows in heated channels.
The physical modeling assumptions used in the proposed closure laws have been
parametrically tested and validated against experimental data. It has been
demonstrated that the overall model is capable of capturing various local flow and
heat transfer phenomena in general, and the onset of temperature excursion (CHF) in
low-quality forced-convection boiling, in particular.
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